ÁLGEBRA:

RADICAIS

AVALIAR CONHECIMENTOS - SOLUÇÕES

ESCOLHA MÚLTIPLA

- **1.** C
- **2.** C
- 3 D
- 4 D
- **-** C
- *c* -
- 7 F

RESPOSTA ABERTA

8.

- 8.1. $2\sqrt[4]{2}$
- 8.2. $3\sqrt{3}$
- **8.3.** $2x^2\sqrt[3]{x}$
- **8.4.** $3y^4\sqrt{3xy}$

9.

- **9.1.** $19\sqrt{2}$
- 9.2. $4\sqrt{6}$
- 9.3. $-\sqrt[3]{6}$
- 9.4. $2\sqrt[3]{6}$
- $10. \ \left(\frac{\sqrt{5}-1}{2} = \frac{\sqrt{5}-1}{2}\right)$

11

- 11.1. $5^{\frac{1}{3}}$
- 11.2. $5^{-\frac{1}{2}}$
- 11.3. $2^{-\frac{5}{2}}$
- 11.4. $\chi^{\frac{1}{12}}$

12.

- 12.1. $\sqrt[3]{4}$
- **12.2.** ⁵√64
- **12.3.** $\sqrt[3]{100}$
- 12.4. $\sqrt[7]{\frac{1}{x^3}}$

13.

- **13.1.** 80 azulejos
- 13.2. $80 \times 4\sqrt{7.5} = 160\sqrt{30} \ dm$

14.

1

- 14.1. $\frac{\sqrt{3}}{3}$
- 14.2. $\sqrt[3]{5^2}$
- **14.3.** $2\sqrt{2}-2$
- **14.4.** $\sqrt{5} + \sqrt{2}$
- 14.5. $\frac{3+\sqrt{3}}{3}$
- 15. Sejam a a apótema da pirâmide, h a altura da pirâmide e l o lado da base da pirâmide.
 - 15.1. $\frac{a}{\frac{1}{5}} = \frac{1+\sqrt{5}}{2} \iff a = 68(1+\sqrt{5})$. Logo, o apótema é igual a $68(1+\sqrt{5})$ m.
 - $a^2=h^2+\left(\frac{l}{2}\right)^2 \Leftrightarrow h=\pm 68\sqrt{2+2\sqrt{5}}.$ Assim, a pirâmide tem $68\sqrt{2+2\sqrt{5}}~m$ de altura.
 - **15.2.** $A_{tri\hat{a}ngulo} = \frac{l \times a}{2} = 9248(1 + \sqrt{5}) m^2$

15.3.
$$V_{pir\hat{a}mide} = \frac{272^2 \times 68\sqrt{2 + 2\sqrt{5}}}{3} m^3$$

16.

16.1. Por definição, o hexágono regular é composto por 6 triângulos equiláteros.

$$x^2 = ap^2 + \left(\frac{x}{2}\right)^2 \Leftrightarrow ap = \pm \frac{\sqrt{3}}{2}x$$

16.2.
$$A_{tri\hat{a}ngulo} = \sqrt{3} \Leftrightarrow \frac{x \times \frac{\sqrt{3}}{2} x}{2} \Leftrightarrow x = \pm 2$$

Portanto, o valor de $x \notin 2$ cm .

17.

18. Seguindo a sugestão e sabendo que o raio da circunferência maior (R) é igual a 1 porque está inscrita num quadrado de raio 2 cm de lado:

• Diagonal do quadrado maior: $D = 2\sqrt{2}$

• Diagonal do quadrado menor: $d = 2\sqrt{2}r$

Tendo em conta que $1 + r + \frac{d}{2} = \frac{D}{2} \iff r = 3 - 2\sqrt{2}$

Então, a área do círculo mais pequeno é dada por: $A_o=\pi r^2=\left(3-2\sqrt{2}\right)^2\pi=\left(17-12\sqrt{2}\right)\pi\ cm^2$

