Quais são os números inteiros?

Por exemplo, os números –3, –2, –1, 0, 1, 2 e 3 são números inteiros.

O conjunto formado pelos números inteiros positivos, números inteiros negativos e o zero chama-se conjunto dos números inteiros ou números inteiros relativos, e designa-se por \( \mathbb{Z} \).

Os números racionais podem ser representados na reta numérica:

- A abscissa do ponto \( P \) é +3:
  \[ P \quad +3 \]
- A abscissa do ponto \( R \) é –2:
  \[ R \quad -2 \]
- A abscissa do ponto \( S \) é \(-\frac{1}{2}\):
  \[ S \quad -\frac{1}{2} \]

O que é o módulo ou valor absoluto da abscissa de um ponto?

É a medida da distância desse ponto à origem.

Exemplos: \( |+3| = 3 \), \( |-2| = 2 \), \( |0| = 0 \), \( |-\frac{5}{4}| = \frac{5}{4} \) e \( |0.1| = 0.1 \).

Qual é o número simétrico de –2? E de 1,2?

O simétrico de –2 é +2. O simétrico de 1,2 é –1,2.

Dois números simétricos têm sinais contrários e o mesmo valor absoluto.

**Prática**

1. Observa a reta numérica.

   - Completa com as abscissas dos pontos:
     \[ Q \quad \quad \quad \quad M \quad \quad \quad \quad S \quad \quad \quad \quad P \]

   - Qual é o valor absoluto das abscissas dos pontos \( N \), \( M \), \( P \), \( Q \), \( S \) e \( T \)?

   - Qual é o simétrico de +8? E de \(-\frac{7}{3}\)? E de –0,5?
Como comparar e ordenar números racionais?

Uma reta numérica facilita a comparação e ordenação de números racionais. Um número é tanto maior quanto mais à direita se encontrar na reta.

\[
\begin{align*}
\text{Assim, } & -\frac{5}{2} < -1 < 0 < \frac{3}{4} < 2 < 3 < 4,5.
\end{align*}
\]

O que são segmentos orientados?

Quando a um segmento de reta se atribui um sentido, obtém-se um segmento de reta orientado.

\[
[A, B] \text{ é um segmento de reta orientado positivamente.}
\]

\[
[C, D] \text{ é um segmento de reta orientado negativamente.}
\]

Como adicionar números racionais usando a reta numérica?

- \((-3) + (+2) = -1\)
- \(\frac{1}{3} + (-1) = \frac{4}{3}\)

Pratique

2. Quais são os números inteiros maiores do que \(-\frac{7}{2}\) e menores do que 2,5?

3. Coloca por ordem crescente: \(\frac{3}{2}, -4, 1, 2, -2, \frac{1}{2}, \frac{7}{4}\)

4. Utiliza segmentos orientados para calcular:
   - \((-3) + (-2)\)
   - \((-1) + (-5)\)
   - \(\frac{1}{2} + (-1)\)

5. Identifica a adição que cada figura traduz e indica a soma.

   5.1
   5.2
Como calcular a soma de dois números racionais?

A **soma de dois números positivos** é um número positivo cujo valor absoluto é a soma dos valores absolutos das parcelas.

**Exemplo:**
- \((+8) + (+4) = +13\)

A **soma de dois números negativos** é um número negativo cujo valor absoluto é a soma dos valores absolutos das parcelas.

**Exemplos:**
- \((-6) + (-2) = -8\)
- \(-\frac{1}{2} + (-2) = (-\frac{1}{2}) + (-\frac{4}{2}) = -\left(\frac{1}{2} + \frac{4}{2}\right) = -\frac{5}{2}\)

A **soma de dois números de sinais contrários** é um número cujo sinal é o da parcela de maior valor absoluto e cujo valor absoluto é a diferença dos valores absolutos das parcelas.

**Exemplos:**
- \((-9) + (+3) = -6\)
- \((+12) + (-5) = +7\)
- \((-2,1) + (+1,7) = -(2,1 - 1,7) = -0,4\)

Observa mais exemplos:
- \(-\frac{7}{2} + \left(-\frac{1}{2}\right) = -\left(\frac{7}{2} + \frac{1}{2}\right) = -\frac{8}{2} = -4\)
- \(-\frac{7}{8} + \left(+\frac{1}{4}\right) = -\left(\frac{7}{8} - \frac{1}{4}\right) = -\left(\frac{7}{8} - \frac{2}{8}\right) = -\frac{5}{8}\) porque \(\frac{7}{8} > \frac{1}{4}\)
- \(-\frac{1}{3} + \left(+\frac{13}{6}\right) = +\left(\frac{13}{6} - \frac{1}{3}\right) = +\left(\frac{13}{6} - \frac{2}{6}\right) = +\frac{11}{6}\) porque \(\frac{13}{6} > \frac{1}{3}\)

**Pratca**

1. Calcule:
   - 1.1 \(1,2 + (+\frac{1}{2})\)
   - 1.2 \((-3) + (-5,1)\)
   - 1.3 \((-\frac{4}{5}) + (+1,8)\)
   - 1.4 \((-1) + (-\frac{1}{5})\)
   - 1.5 \(-\frac{18}{2} + (+9)\)
   - 1.6 \(-\frac{13}{9} + (+\frac{1}{18})\)

2. Escreve em linguagem simbólica matemática e calcula:
   - 2.1 a soma de duas décimas com o simétrico de três quintos;
   - 2.2 a soma de vinte e uma décimas com menos um quarto.

3. Descreve os sinais que estão em falta:
   - \((+18) + (...24) = -6\)
   - \((...2,8) + (...2,2) = -0,6\)

4. Indica dois números cuja soma seja \(-0,8\).
Como subtrair números racionais usando a reta numérica?

**Exemplo:** 4 – (–1)

Assinalam-se na reta A 4 e B –1 e traça-se o segmento orientado [B, A]. Com origem em O, traça-se o segmento com o mesmo comprimento e orientação de [B, A]. A abcissa da extremidade D desse segmento orientado é 4 – (–1), isto é, 5.

**Exemplo:** –3 – \left(\frac{1}{2}\right) = –3.5

**Nota:** a diferença entre dois números racionais equivale à soma do aditivo com o simétrico do subrativo: \(a – b = a + (–b)\).

\[
4 – (–1) = 4 + (1) = 5 \quad \text{e} \quad –3 – \left(\frac{1}{2}\right) = –3 + \left(-\frac{1}{2}\right) = –3.5
\]

Observa mais exemplos:

- \(\frac{9}{5} – \left(\frac{1}{10}\right) = \frac{9}{5} + \left(-\frac{1}{10}\right) = \frac{18}{10} + \left(-\frac{1}{10}\right) = \frac{18}{10} – \frac{1}{10} = \frac{17}{10} \quad \text{pois} \quad \frac{18}{10} > \frac{1}{10}

Como calcular a distância entre os pontos de abcissas A –4 e B –6?

A medida da distância entre os pontos de abcissas –4 e –6 é igual ao módulo da respetiva diferença:

\(|–4 – (–6)| = |–6 – (–4)| = 2

**Prática**

5. Constrói, na reta numérica, os pontos que representam as seguintes diferenças:

5.1 \(-4 – (–2)\)

5.2 \(\frac{1}{3} – \left(\frac{3}{2}\right)\)

6. Calcula:

6.1 \(-8 – (–5)\)

6.2 \(+26 – (+21)\)

6.3 \(-\frac{3}{4} – \left(\frac{7}{4}\right)\)

6.4 \(-\frac{3}{4} – \left(\frac{3}{8}\right)\)

6.5 \(\frac{2}{5} – \left(-\frac{3}{4}\right)\)

6.6 \(-\frac{7}{5} – \left(\frac{2}{3}\right)\)

7. Sendo A –\(\frac{3}{2}\), B \(+\frac{7}{5}\) e C –0.5, determina a distância de A a B e de A a C.

8. Escreve em linguagem simbólica e calcula a diferença entre onze terços e o simétrico de nove meios.