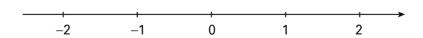
Ficha de avaliação 1

Nome da Escola	Ano letivo 20 /20		Matemática 8.º ano	
Nome do Aluno	Turma	N.º	Data	
Professor			/ /20	

- Apenas um dos quatro números seguintes é um número irracional. Qual?
 - **(A)** $\sqrt{\frac{1}{49}}$
- **(B)** $\sqrt{0.49}$ **(C)** $\sqrt{4.9}$
- **(D)** $-\frac{2}{3}$

- Qual das afirmações seguintes é verdadeira?
- (A) $-\frac{9}{17} \le -\frac{7}{19}$ (B) $\pi > \sqrt{10}$ (C) 0,131 45 < 0,131 448 (D) $\sqrt[3]{5} > \sqrt{3}$


Considera o conjunto seguinte.

$$A = \left\{3.5 \; ; \; -\frac{5}{3} \; ; \; \sqrt{17} \; ; \; 0,(5) \; ; \; -\frac{120}{480} \; ; \; \sqrt{\frac{1}{2^2 \times 7^2}} \; ; \; 1,(2)\right\}$$

- 3.1. Qual dos números do conjunto A é irracional? Justifica a tua resposta.
- 3.2. Escreve 3,5 e 0,(5) na forma de fração irredutível.
- Escreve $-\frac{120}{480}$ na forma de fração decimal. 3.3.
- Completa enquadrando $\sqrt{17}$ –5 entre os números inteiros mais próximos. 3.4.

$$... < \sqrt{17} - 5 < ...$$

Representa os números $\frac{-5}{3}$ e 1,(2) na reta numérica seguinte. 3.5.

- Escreve $\sqrt{\frac{4}{2^2 \times 7^2}}$ na forma de dízima infinita recorrendo ao algoritmo da divisão.
- Considera a sequência cujos primeiros três termos são:

Admite que a regularidade se mantém.

O termo geral da sequência é:

- (A) 2^{n-1}
- **(B)** $2 \times 10^{n-1}$ **(C)** 2×10^n
- **(D)** 2ⁿ

Considera o retângulo da figura seguinte.

A medida do perímetro do retângulo é:

- (A) $3\sqrt{2}$ cm

- **(B)** $6\sqrt{2}$ cm **(C)** $6+\sqrt{2}$ cm **(D)** $3+\sqrt{2}$ cm
- **6.** Quando alinhados, Júpiter e Plutão distam do Sol 7,88×10⁸ km e 5,95×10⁹ km, respetivamente.

Qual é a distância, em km, entre Júpiter e Plutão, estando os dois do mesmo lado do Sol? Apresenta o resultado em notação científica.

7. Resolve a equação seguinte:

$$1,(1) x = \frac{2}{3}$$

Determina, na forma de fração irredutível, o número racional representado pela expressão seguinte:

$$\frac{\left(-\frac{1}{4}\right)^{4} : \left(-\frac{1}{3}\right)^{4} \times \left(\frac{3}{4}\right)^{-5}}{\left(-\frac{3}{4}\right)^{2} \times \left(-\frac{3}{4}\right)^{-5}}$$

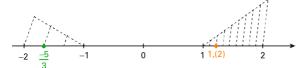
Assinala na reta numérica seguinte um ponto irracional à tua escolha utilizando material de desenho adequado.

Designa-o por A.

10. O Pedro recebeu, em euros, 20% de $2 \times 10^1 + 6 \times 10^{-1} + 5 \times 10^{-2}$.

Quanto recebeu o Pedro?

11. Escreve o número $A = \frac{\sqrt{108}}{2} - \sqrt{27} - \frac{2\sqrt{75}}{3}$ na forma $a\sqrt{3}$, sendo *a* um número racional.

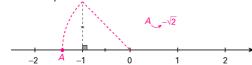

Soluções:

(C)
(A)
√17

3.2. $3.5 = \frac{7}{2}$; $0.(5) = \frac{5}{9}$

3.4. $-1 < \sqrt{17} - 5 < 0$

3.5. $\frac{-5}{3} = -1\frac{2}{3}$; $1,(2) = 1\frac{2}{9}$


3.6. 0,(142857)

4. (B) 5. (B)

6. $5{,}162{\times}10^9$ km

7. $S = \left\{ \frac{3}{5} \right\}$

8. $-\frac{9}{16}$ 9. Por exemplo:

10. 4,13 €

11. $A = -\frac{10}{3}\sqrt{3}$