TESTE INTERMÉDIO DE MATEMÁTICA

7 de Dezembro de 2005

RESOLUÇÃO - VERSÃO 1

Grupo I

1.
$$3! \times 2^3 = 6 \times 8 = 48$$

Resposta **D**

2.
$$1 \times 3! \times {}^{9}A_{2} = 1 \times 6 \times 72 = 432$$

Resposta **B**

3.
$$^{20}C_{10} = 184756$$

Resposta C

4.
$$\frac{2 \times 3}{{}^5C_2} = 0.6$$

Resposta C

5.
$$\frac{2 \times 3!}{6^3} = \frac{1}{18}$$

Resposta A

6. Distribuição de probabilidades associada à variável aleatória X: «Número saído no lançamento de um dado»:

x_i	1	2	3	4	5	6
$P(X=x_i)$	1	1	1	1	1	1
$I(X-x_i)$	6	6	6	6	6	6

Média da variável aleatória $\, X : \,$

$$1 \times \frac{1}{6} + 2 \times \frac{1}{6} + \dots + 6 \times \frac{1}{6} = \frac{21}{6} = 3,5$$

3,5 é o número médio (esperado) de pontos, por lançamento.

$$3.5 \times 6000 = 21000$$

Resposta **B**

7.
$$0.5 - 0.2 = 0.3$$

Resposta C

Grupo II

1.

1.1.
$$9 \times 10 \times 2 = 180$$

1.2.
$$9 \times 9 \times 8 = 648$$

2.

2.1.
$$\frac{P(\overline{B}) - P(\overline{A} \cap \overline{B})}{P(A)} = \frac{1 - P(B) - P(\overline{A \cup B})}{P(A)} =$$

$$= \frac{1 - P(B) - [1 - P(A \cup B)]}{P(A)} = \frac{1 - P(B) - 1 + P(A \cup B)}{P(A)} =$$

$$= \frac{-P(B) + P(A \cup B)}{P(A)} = \frac{-P(B) + P(A) + P(B) - P(A \cap B)}{P(A)} =$$

$$= \frac{P(A) - P(A \cap B)}{P(A)} = \frac{P(A)}{P(A)} - \frac{P(A \cap B)}{P(A)} = 1 - P(B|A)$$

2.2. Do enunciado, sabemos que, considerando apenas os participantes portugueses, 3 em cada 5 são rapazes. Isto significa que, no universo dos portugueses, a proporção de rapazes é $\frac{3}{5}$, ou seja, designando por A o acontecimento «ser português» e por B o acontecimento «ser rapaz», tem-se que $P(B|A) = \frac{3}{5} = 0.6$

Tem-se também que
$$P(A)=\frac{1}{4}=0.25$$
 e $P(\overline{B})=0.52$

Donde, aplicando a fórmula provada na alínea anterior, tem-se que

$$\frac{0,52 - P(\overline{A} \cap \overline{B})}{0,25} = 1 - 0,6 \iff 0,52 - P(\overline{A} \cap \overline{B}) = 0,25 \times 0,4$$

$$\Leftrightarrow P(\overline{A} \cap \overline{B}) = 0,42$$

A probabilidade de o prémio sair a uma rapariga estrangeira é 0,42.

3.

3.1. Tem-se:

x_i	0	1	2
$P(X=x_i)$	$\frac{2\times2}{5\times3}$	$\frac{3\times2+2\times1}{5\times3}$	$\frac{3\times1}{5\times3}$

Donde vem:

x_i	0	1	2
$P(X=x_i)$	$\frac{4}{15}$	$\frac{8}{15}$	$\frac{1}{5}$

3.2. É pedida a probabilidade de as duas bolas retiradas da caixa 2 serem de cores diferentes, sabendo que as três bolas retiradas da caixa 1 são da mesma cor.

Ora, se as três bolas retiradas da caixa 1 e colocadas na caixa 2 são da mesma cor, têm que ser necessariamente todas verdes. Tal deve-se ao facto de existirem apenas duas bolas pretas na caixa 1.

Após a transferência das três bolas da caixa 1 para a caixa 2, esta fica com duas bolas pretas e quatro bolas verdes, num total de seis bolas.

Ao retirarmos duas bolas desta caixa, existem, assim, 6C_2 casos possíveis, dos quais 2×4 são favoráveis ao acontecimento «sair uma bola de cada cor».

A probabilidade pedida é, assim, de acordo com a Regra de Laplace, $\frac{2\times 4}{^6C_2}$, ou

seja,
$$\frac{8}{15}$$

3.3. Equacionando o problema, vem: $\frac{n}{3+n}C_2 = \frac{5}{39}$

Donde,
$$\frac{n}{(3+n)(2+n)} = \frac{5}{39}$$
 pelo que

$$\frac{2\,n}{6+5n+n^2} = \frac{5}{39}$$
 ou seja $78\,n = 30\,+\,25\,n\,+\,5\,n^2$

Donde vem $5n^2 - 53n + 30 = 0$

Portanto, tem-se
$$n=\frac{53\pm\sqrt{53^2-4\times5\times30}}{2\times5}=\frac{53\pm47}{10}$$

Tem-se, assim, $n = 10 \lor n = 0.6$.

Como, nas condições do problema, $\,n\,$ tem que ser um número natural, vem, por fim, que $\,n=10\,$ é a solução procurada.