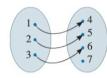
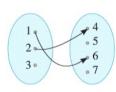
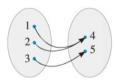

Data

Nº


Generalidades acerca de funções

1. Tendo em consideração a definição de função, diga, justificando, se cada uma das seguintes correspondências é ou não função.


1.1.

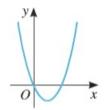

1.2.

1.3.

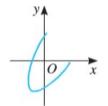
1.4

2. Considere o conjunto $D = \{1, 2, 3\}$. Indique quais dos seguintes conjuntos são gráficos de funções de D em D:

2.1.
$$D = \{(1,1); (1,2); (1,3)\}$$

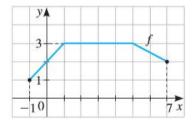

2.3.
$$D = \{(1,3); (2,3); (3,3)\}$$

2.2.
$$D = \{(1,1); (2,2); (3,3)\}$$


2.4.
$$D = \{(1,3); (2,1); (3,1)\}$$

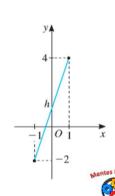
3. Indique qual das seguintes curvas representa o gráfico de uma função.


(A)


(B)

(C)

- **4.** Na figura está uma representação gráfica da função f de domínio [-1,7] e conjunto de chegada \mathbb{R} . Indique:
 - **4.1.** A imagem de 0;
 - **4.2.** f(2);
 - **4.3.** O objeto cuja imagem por $f \in 1$;
 - **4.4.** O contradomínio de f.


- 5. Considere a função f de domínio $A = \{0, 1, 2, 3, 4, 5\}$ e definida analiticamente pela expressão f(x) = x(x+1).
 - **5.1.** Complete a tabela:

x	0	1	2	3	4	5
f(x)						

- **5.2.** Indique o contradomínio de f.
- **5.3.** Represente por meio de uma tabela $f|_{\{0,2,4\}}$.
- **6.** Considere a função g de domínio \mathbb{R} definida analiticamente por g(x) = -2x + 1.
 - **6.1.** Determine:

1

- **6.1.1.** g(0);
- **6.1.2.** A imagem de -4;
- **6.1.3.** O objeto cuja imagem por $g \in 3$.
- **6.2.** Represente graficamente a função g.
- **6.3.** Considere o conjunto $A = \{-2, -1, 0, 1, 2\}$. Determine o gráfico de $g|_A$ e represente-o.
- 7. Considere a função h de domínio [-1,1], cujo gráfico é o segmento de reta representado na figura ao lado.
 - **7.1.** Mostre que h pode ser definida analiticamente por h(x) = 3x + 1.
 - **7.2.** Indique o contradomínio de h.
 - **7.3.** Calcule o objeto cuja imagem por $h \in 0$.
 - **7.4.** Esboce o gráfico da função $h|_{[-4,0]}$ e indique o seu contradomínio.

<u>Soluções</u>

1.

- 1.1. A correspondência não é função porque o elemento 3 do conjunto de partida tem correspondência com os elementos 6 e 7 do conjunto de chegada.
- 1.2. A correspondência é função porque a cada elemento do conjunto de partida corresponde um e um só elemento do conjunto de chegada.
- 1.3. A correspondência não é função porque elemento 3 do conjunto de partida não tem nenhuma correspondência com os elementos do conjunto de chegada.
- 1.4. A correspondência é função porque a cada elemento do conjunto de partida corresponde um e um só elemento do conjunto de chegada.

2.

- 2.1. Não é função.
- 2.2. É função.
- 2.3. É função.
- 2.4. É função.
- 3. Curva A.

4.

- **4.1.** f(0) = 2
- **4.2.** f(2) = 3
- 4.3. -1
- **4.4.** $D'_f = [1,3]$

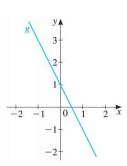
5.

5.1.

x	0	1	2	3	4	5
f(x)	0	2	6	12	20	30

- **5.2.** $\overline{D'_f} = \{0, 2, 6, 12, 20, 30\}$
- 5.3.

x	0	2	4
$f _{\{0,2,4\}}(x)$	0	6	20

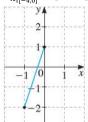

6.

6.1.

- **6.1.1.** g(0) = 1
- **6.1.2.** g(-4) = 9

6.1.3.
$$g(x) = 3 \Leftrightarrow -2x + 1 = 3 \Leftrightarrow x = -1$$

6.2.


6.3.

7.

- 7.1. Os pontos A(-1,-2) e B(1,4) pertencem ao gráfico de h. Como $\overrightarrow{AB}(2,6)$, então po declive da reta é $\frac{6}{2}=3$ e h(x)=3x+b. Considerando o ponto B(1,4), temos que a ordenada em x=1 é $4=3+b \Leftrightarrow b=1$. Portanto, h pode ser definida analiticamente por h(x)=3x+1.
- 7.2. $D'_h = [-2, 4]$
- 7.3. $h(x) = 0 \Leftrightarrow x = -\frac{1}{3}$, que pertence ao domínio de h.

7.4. $D'_{h|_{[-4,0]}} = [-2,1]$

